邮箱登录  
   
2017年9月22日
 您现在的位置: 首页 >>  新闻公告 >> 学术动态
学术报告:Understanding and Predicting Mesoscale Microstructure Evolution Guided by Integrated Phase-Field Simulations and Experimental Observations
发布时间:2017/7/22 16:25                  浏览次数:564 次 

报告人:陈龙庆(Long-qing Chen教授 美国宾夕法尼亚州立大学

邀请人:江亮 教授

时间:2017725日 上午10:00

地点:中南大学三一楼506

报告人简介:

陈龙庆是美国宾夕法尼亚州立大学材料科学与工程Donald W. Hamer讲座教授, 工程科学与力学教授,和数学教授。他分别在浙江大学,纽约州立大学石溪分校,麻省理工学院获得材料科学与工程系学士,硕士,博士学位。他于1992年开始在宾夕法尼亚州立大学任教。他的主要研究方向是介观尺度和多尺度计算材料学,相场方法及数学模拟, 微观结构和微观弹性理论,合金沉淀相形貌和粗化,铁电和多铁氧化物畴结构与翻转,相变热力学与动力学,介电材料降解与击穿, 锂离子电池。他已发表文章500多篇和2项专利。陈龙庆教授获得过多种研究奖项,包括2014 MRS材料理论奖(Materials Theory Award), Guggenheim(古根海姆)奖,德国洪堡研究奖, TMS功能材料分会杰出科学家奖,中科院沈阳金属所李薰讲座奖,ASM International银牌奖,美国海军研究办公室的青年研究者奖,两次美国自然科学基金特别创造性奖,宾夕法尼亚州立大学优秀工程学者奖章,宾夕法尼亚州立大学杰出教授,中国教育部长江讲座教授(2004-2007),中国基金委海外杰出青年(2004-2007),清华大学短期千人计划教授(2012-2015),浙江大学宝包玉刚讲座教授(2013-2016), 美国ASM International学会会士,美国陶瓷学会(ACerS)会士,美国物理学会(APS)会士,美国材料研究学会(MRS)会士,美国矿物,金属和材料学会(TMS)会士

报告摘要:

Mesoscale materials science is the study and manipulation of the hierarchical architectures of structural, magnetic, electric polarization, charge, and chemical domains that bridge the atomic scale electronic structure and the macroscopic continuum.  It is the evolution of the mesoscale architecture that largely controls the responses of a material to external mechanical, magnetic, electric and chemical stimuli. To capture, understand, and control mesoscale architectures requires computational approaches beyond the electronic structure methods and molecular dynamics simulations at the atomic scale. This presentation will introduce the phase-field method to model and predict the hierarchical mesoscale structures between atoms and the continuum bulk. In the phase-field method, the mesoscale architecture of a material is described by a set of continuum fields such as spatial distributions of atomic density, chemical composition, long-range atomic order, crystallinity, and ferroic order. It can handle arbitrarily complex spatial distributions of structure, composition, and order parameters; it can account for the interfacial and defect energies as well as the long-range electrostatic, magnetic, and elastic interactions within a mesoscale architecture. It has been successfully applied to modeling and predicting a range of materials processes including phase transitions and domain formation, solidification, grain growth, particle coarsening, electrochemical processes, dislocation dynamics, fracture, and biological cell dynamics. It will be demonstrated that one can use the phase-field method to help interpreting experimental observations as well as to provide guidance to achieve desirable mesoscale structures in a wide variety of materials systems.

  来源: 作者:  
【打印】 【关闭】  

版权所有 2012 中南大学粉末冶金研究院
Copyright©2012  Powder Metallurgy Research Institute, Central South University. All Rights Reserved.
电话:0731-88830408  邮箱:webmaster@mail.pmworld.cn      地址:湖南省长沙市岳麓山  邮编:410083