我的主页      中南大学      粉末冶金研究院      
浏览次数:4256    |   登录   |   English
刘 彬
个人简介

刘彬,男,1980年出生,工学博士,中南大学粉末冶金研究院 高温结构材料研究所所长,研究员,博士生导师,日本Tohoku University博士后,中国核学会核材料分会理事。先后承担国家自然科学基金项目、国家重大科研发展计划项目、国家“973”项目、湖南省自然科学基金面上项目等各类项目10余项。以第一作者或通讯作者在国内外重要学术期刊发表论文40余篇,申请和授权国家发明专利20余项,在国际会议作特邀及口头报告10余次。2017年获教育部高等学校科学研究优秀成果奖自然科学二等奖(“粉末冶金钛基结构材料制备与加工基础理论研究”)。长期担任《Materials Research Letters》《Journal of Alloys and Compounds》、《Intermetallics》、《Materials Characterization》、《International Journal of Fatigue》、《Computational Materials Science》、《Murtallurgical and Materials transactions A》等知名国际期刊审稿人。

教育经历

2004.9-2008.7  中南大学 粉末冶金研究院 博士

工作经历

2017.9-至今   中南大学粉末冶金研究院  研究员

2012.9-2017.9  中南大学粉末冶金研究院  副教授

2009.1-2012.4  日本東北大学金属材料研究所  研究员

2013.7-2015.6  福建龙溪轴承(集团)股份有限公司  企业博士后

2008.6-2010.6  中南大学 冶金工程博士后流动站 博士后

社会兼职

1. 中国核学会核材料分会理事

2. 《Materials Research Letters》《Journal of Alloys and Compounds》、《Intermetallics》、《Materials Characterization》、《International Journal of Fatigue》、《Computational Materials Science》、《Murtallurgical and Materials transactions A》等知名国际期刊审稿人。

科研方向

先进粉末冶金材料:高熵合金、钛合金、钛铝金属间化合物等

先进加工技术:增材制造、放电等离子烧结、真空致密化等

材料物理/力学行为:金属材料塑性变形行为、金属材料强韧化理论、金属材料辐照损伤行为等

讲授课程

《金属材料与热处理》
《粉末冶金新技术研究方法论》

学术成果

科研项目:

1. 国家自然科学基金面上项目,稀土氧化物增强轻质难熔高熵合金相形成及强韧化机制研究,51771232, 60万元,2018.01-2021.12

2. 国家自然科学基金青年项目,双相钛合金马氏体热变形机制和组织超细化机理研究,51301203,25万元,2014.01-2016.12

3. 国家重大科研发展计划项目,高通量块体材料制备新方法、新技术与新装备,2016YFB0700302, 507万元,2016.7-2020.12

4. 国家973项目,集成高通量实验与计算的钛合金快速设计的基础研究, 2014CB644002,540万元,2014.1 -2015.12

5. 国家973项目,轻质高温TiAl金属间化合物合金及其制备加工的科学技术基础, 2011CB605505,462万元,2013.1 -2015.12

6. 湖南省自然科学基金面上项目,超细晶粉末冶金钛铝合金薄板材的制备及组织演化行为研究, 2017JJ2311, 2017/01-2018/12

7. 湖南省科技计划项目,高性能粉末冶金钛合金紧固件研制,2014GK3078,2014.1 -2014.12

8. 中国航天科工集团预研课题:粉末冶金钛铝合金xxxx研制,2018-2019

9. 中国博士后基金,紧固件用粉末冶金钛合金的研究,2014M551827,2014.1-2015.12

专利:

1. 一种多组元难熔合金球形粉末的制备方法,201911293189.7

2. 一种掺稀土元素的NiAl合金及其制备方法和应用,2016111684475,授权日:2019.03.04

3.一种NiAl合金及其制备方法和应用, 2016111688264,授权日:2018.12.04

4. 一种掺B的NiAl合金及其制备方法和应用,2016111682501,授权日:2018.12.04

5. 一种发动机粉末冶金气门及其制备方法, CN109055816A, 申请日:2018.12.21.

6. 一种钛合金材料汽车发动机连杆的制备方法,CN109112357A,申请日:2018.08.22

7. 一种高金属汽车摩擦片及其制备方法,CN201810426404,申请日:2018.05.07

8. 一种低噪音高金属军车用摩擦片及其制备方法,CN201810411011,申请日:2018.05.02

9. 一种钛基复合材料汽车发动机气门的制备方法,CN201810240987,申请日:2018.03.22

10.  一种Nb增韧钛铝基合金复合材料的制备方法,CN201711480907,申请日:2017.12.29

11. 一种含碳高熵合金复合材料的制备方法,CN201711381731,申请日:2017.12.20

12. 一种难熔高熵合金球形粉末的制备方法,CN201711309760,申请日:2017.12.11

13. 一种硬质高熵合金复合材料的制备方法,CN201711284615,申请日:2017.12.07

14. 一种粉末冶金TC4钛合金螺栓的制备方法,CN201610357894.9       授权日:2017.11.17

15. 一种高熵合金把持磨料颗粒的复合材料及其制备方法和应用,CN201710819270,申请日:2017.09.12

16. 一种铜基高温自润滑复合材料CN201710695048,申请日:2017.08.15

17. 一种钛基复合材料及其制备方法,CN201710324860,申请日:2017.05.10

18. 增材制造用工具钢粉末、工具钢及该工具钢的制备方法,CN201611072823,申请日:2016.11.29

19. 一种难熔高熵合金/碳化钛复合材料及其制备方法,CN201610569648,授权日:2018.02.13

20.一种快速制备粗晶梯度硬质合金的方法,CN201510561512,授权日:2017.05.10

21.一种材料连续温度梯度热处理方法,CN201410662326,授权日:20170111

22. 一种利用α″斜方马氏体微结构制备超细晶钛合金的方法,CN201410662915,申请日:2014.11.19

23. 一种环氧树脂涂料及其制备方法和应用,CN201410502904,授权日:2016.08.24

24. 一种粉末冶金钛合金棒材的制备方法,CN201410474310,授权日:2016.09.14

25.一种镍铝基合金多孔材料的制备方法,CN200810031136,授权日:2009.11.04

26.一种采用多孔Ni3Al合金催化制备碳纳米管的方法,CN200810031138,授权日:2010.07.14

27.一种高致密TiAl基合金制备方法,CN200710034383,授权日:2009.09.09

论文:

[1]  Ao Fu,Wenmin Guo, Bin Liu*, Yuankui Cao, Liyou Xu, Qihong Fang, Hu Yang, Yong Liu, A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties, Journal of Alloys and Compounds,2019, 152466

[2] Jingwen Qiu, Zhengfan Fu, Bin Liu*, Yong Liu, Jianhui Yan**, Di Pan, Weidong Zhang, Ian Baker, Effects of niobium particles on the wear behavior of powder metallurgical γ-TiAl alloy in different environments, Wear, 2019, 434-435, 15, 202964.

[3] Jingwen Qiu, Canxu Zhou, Bin Liu*, Yong Liu*, Huizhong Li, Xiaopeng Liang, Xiang Zan, Precipitation behavior of Ti-45Al-3Fe-2Mo-0.5C intermetallics after creep tests at 750 °C, Materials Characterization, 2019, 155, 109825.

[4] Jingwen Qiu, Zhengfan Fu, Bin Liu*, Yong Liu, Jianhui Yan, Di Pan, Weidong Zhang, Yu Wang, Wear Behavior of P/M High Nb containing γ-TiAl alloy in Different Environments, Metals and Materials International, 2019, DOI: 10.1007/s12540-019-00279-2.

[5] Rongjun Xu, Bin Liu*, Zhiqiao Yan, Feng Chen, Wenmin Guo, Yong Liu*, Low-cost and high-strength powder metallurgy Ti-Al-Mo-Fe alloy and its application, Journal of Materials Science, 2019, 54:12049-12060

[6] Sihui Ouyang, Bin Liu*, Yong Liu, Xiang Zan**, Xiaopeng Liang, Zheng Li, Dynamic tensile behavior of PM Ti-47Al-2Nb-2Cr-0.2W intermetallics at elevated temperatures. Transactions of Nonferrous Metals Society of China, 2019, 29 ( 6):1252-1262

[7]  Cui Zhang, Bin Liu*, Yong Liu, Qihong Fang, Wenmin Guo**, Hu Yang. Effects of Annealing on Microstructure and Mechanical Properties of Metastable Powder Metallurgy CoCrFeNiMo0.2 High Entropy Alloy. Entropy 2019, 21(5), 448

[8]  Qi An, Jiawen Wang, Yong Liu, Bin Liu*, wenmin guo, Qihong Fang*, Yan Nie, Effects of C and Mo on microstructures and mechanical properties of dual-phase high entropy alloys. INTERMETALLICS, 2019, 110, 106471.

[9]  Fang, QH, Wang, Q, Li, J*, Chen, EZ, Liu, B*, Wen, PH. A systematic investigation of cycle number, temperature and electric field strength effects on Si anode. MATERIALS & DESIGN, 2019, 144: 1-13

[10] Yuankui Cao, Yong Liu*, Yunping Li, Bin Liu*, Jiawen Wang, Meng Du, Ruiping Liu. Precipitation strengthening in a hot-worked TiNbTa0.5ZrAl0.5 refractory high entropy alloy. Materials Letters, 246 (2019) 186–189.

[11] Kun ZHAO, Si-hui OUYANG, Yong LIU, Bin LIU*, Xiao-peng LIANG, Hui-zhong LI, Yu WANG. Isothermal oxidation behavior of TiAl intermetallics with different oxygen contents. Transactions of Nonferrous Metals Society of China, 29(2019) 526-533.

[12] Wenmin Guo, Bin Liu*, Yong Liu, Qihong Fang*. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. Journal of Alloy and Compound, 2019, 776, 428-436

[13]  Liu, B*., Xu, L.Y., Liu, Y., Wang, J.S., Wang, J.W., Fang, Q.H. Effect of cold working and annealing on microstructure and properties of powder metallurgy high entropy alloy, Science China-Technological Sciences,2018, 61 (2):197-203.

[14] Xu, R., Liu, B*., Liu, Y., Cao, Y., Guo, W., Nie, Y., Liu, S. High temperature deformation behavior of in-situ synthesized titanium-based composite reinforced with ultra-fine TiB whiskers, Materials, 2018, 11 (10), 1863

[15] Li, T., Liu, B., Liu*, Y., Guo, W., Fu, A., Li, L., Yan, N., Fang, Q. Microstructure and mechanical properties of particulate reinforced NbMoCrTiAl high entropy based composite, Entropy, 2018, 20 (7):1-9.

[16]  Li, J., Fang, Q*., Liu, B*., Liu, Y. Transformation induced softening and plasticity in high entropy alloys, Acta Materialia, 2018, 147:35-41.

[17] Fang, Q., Wang, Q., Li, J*., Chen, E., Liu, B*., Wen, P. A systematic investigation of cycle number, temperature and electric field strength effects on Si anode, Materials and Design, 2018, 144:1-13.

[18] Wang, Z.P., Fang, Q.H*., Li, J., Liu, B*. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure, Superlattices and Microstructures, 2018, 116:141-150. 

[19]  B. Liu, J. Wang, J. Chen, Q. Fang, Y. Liu, Ultra-High Strength TiC/Refractory High-Entropy- Alloy Composite Prepared by Powder Metallurgy, JOM, 2017, 69: 651-656.

[20] X. Gong, Y. Cui, D. Wei, B. Liu*, R. Liu, Y. Nie, Y. Li, Building Direction Dependence of Corrosion Resistance Property of Ti-6Al-4V Alloy Fabricated by Electron Beam Melting, Corrosion Science, 2017, 127: 101-109.

[21] Z.P. Pi, Q.H. Fang, B. Liu*, Y. Liu, P.H. Wen, Effect of a generalized shape Peierls potential and an external stress field on kink mechanism in a continuum model, International Journal of Plasticity, 2017, 90: 267-285.

[22]  Jiawen Wang, Y. Liu, B. Liu*, Y. Wang, Y. Cao, T. Li, R. Zhou, Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0.2 high entropy alloy during high temperature deformation, Materials Science and Engineering A, 2017, 689: 233-242.

[23] Chunjie Xiang, Y. Liu, B. Liu*, Y. Cao, Z. Gan, Characterization of hot deformation behavior of Ti-3Al-5Mo-4.5V alloy with a martensitic starting microstructure, Journal of Micromechanics and Molecular Physics, 2017, 2: 1750011-1750024.

[24] Tianchen Li, Y. Liu, B. Liu*, W. Guo, L. Xu, Microstructure and Wear Behavior of FeCoCrNiMo0. 2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes, Coatings, 2017, 7: 151-165.

[25] J. Li, B. Liu*, Q.H. Fang, Z.W. Huang, Y.W. Liu, Atomic-scale strengthening mechanism of dislocation-obstacle interaction in silicon carbide particle-reinforced copper matrix nanocomposites, Ceramics International, 2017, 43: 3839-3846.

[26] Can-xu Zhou, Bin Liu*, Yong Liu, Cong-zhang Qiu, Hui-zhong Li, Yue-hui He, Effect of carbon on high temperature compressive and creep properties of β-stabilized TiAl alloy, Transactions of Nonferrous Metals Society of China, 2017, 11: 2400-2405.

[27]  H. Feng, Q.H. Fang, B. Liu*, Y. Liu, Y.W. Liu, P.H. Wen, Nucleation and growth mechanisms of nanoscale deformation twins in hexagonal-close-packed metal magnesium, Mechanics of Materials, 2017, 109: 26-33.

[28] B. Liu*, J. Wang, Y. Liu, Q. Fang, Y. Wu, S. Chen, C.T. Liu, Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion, Intermetallics, 2016, 75: 25-30.

[29] J. Peng, Q.H. Fang, Y.W. Liu, B. Liu*, P.H. Wen, Influence of nanoscale amorphization on emission of dislocations from a finite length crack tip in nanocrystalline materials, Engineering Fracture Mechanics, 2016, 163: 487-498.

[30] Jia Li, B. Liu*, H. Luo, Q. Fang, Y. Liu, Y. Liu, A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates, Computational Materials Science, 2016, 118: 66-76.

[31] Jia Li, Q. Fang, B. Liu*, Y. Liu, The effects of pore and second-phase particle on the mechanical properties of machining copper matrix from molecular dynamic simulation, Applied Surface Science, 2016, 384: 419-431.

[32] Jia Li, Q. Fang, B. Liu*, Y. Liu, Y. Liu, Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation, RSC Advances, 2016, 6: 76409-76419.

[33] Canxu Zhou, B. Liu*, Y. Liu, K. Zhao, J. Lu, C. Qiu, J. Li, Y. He, Effects of Si on microstructures and high temperature properties of beta stabilized TiAl alloy, Materials Transactions, 2016, 57: 461-465.

[34] Yuankui Cao, F. Zeng, B. Liu*, Y. Liu, J. Lu, Z. Gan, H. Tang, Characterization of fatigue properties of powder metallurgy titanium alloy, Materials Science and Engineering A, 2016, 654: 418-425.

[35] Jiaxiang Li, Y. Li, Z. Wang, H. Bian, Y. Hou, F. Wang, G. Xu, B. Liu*, Y. Liu, Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder, Scientific Reports, 2016, 6: 39650-39660.

[36] Z. Chen, B. Liu*, Y. Liu, F. Zeng, J. Lu, Microstructural evolution in a powder metallurgical Ti-7Mo alloy with continuous oxygen gradient, Journal of Central South University, 2016, 23: 508-514.

[37]  B. Liu*, Y. Liu, L. Huang, H. Li, Y. He, Characterization of phase transformation during hot compressive deformation in a β-stabilized Ti-45Al-7Nb-0.4W-0.15B alloy, Materials Characterization, 2015, 105: 113-117.

[38] B. Liu*, Y. Liu, C. Qiu, C. Zhou, J. Li, H. Li, Y. He, Design of low-cost titanium aluminide intermetallics, Journal of Alloys and Compounds, 2015, 640: 298-304.

[39]  Yuankui Cao, F. Zeng, J. Lu, B. Liu*, Y. Liu, Y. Li, In Situ Synthesis of TiB/Ti6Al4V Composites Reinforced with Nano TiB through SPS, Materials Transactions, 2015, 56: 259-263.

[40]  B. Liu, Y. Li, H. Matsumoto, Y. Koizumi, Y. Liu, A. Chiba*, Enhanced grain refinement through deformation induced α precipitation in hot working of α+ β titanium alloy, Advanced Engineering Materials, 2012, 14: 785-789.

[41]  B. Liu, Y.P. Li, H. Matsumoto, Y.B. Liu, Y. Liu, A. Chiba*, Thermomechanical characterization of P/M Ti-Fe-Mo-Y alloy with a fine lamellar microstructure, Materials Science and Engineering: A, 2011, 528: 2345-2352.

[42]  B. Liu, Y. Liu*, Y.P. Li, W. Zhang, A. Chiba, Thermomechanical characterization of β-stabilized Ti-45Al-7Nb-0.4W-0.15 B alloy, Intermetallics, 2011, 19: 1184-1190.

[43] B. Liu, Y. Liu, W. Zhang, J.S. Huang, Hot deformation behavior of TiAl alloys prepared by blended elemental powders, Intermetallics, 2011, 19: 154-159.

[44] B. Liu, Y.P. Li, H. Matsumoto, Y.B. Liu, Y. Liu, H.P. Tang, A. Chiba*, Thermomechanical response of particulate-reinforced powder metallurgy titanium matrix composites-A study using processing map, Materials Science and Engineering: A, 2010, 527: 4733-4741.

[45]  B. Liu, Y. b. Liu, X. Yang, Y. Liu*, TITANIUM 2008: Development of international titanium industry, preparation technology and applications, Materials Science and Engineering of Powder Metallurgy, 2009, 2: 67-73.

[46]  L. Bin, L. Yong*, X. HE, H. TANG, L. CHEN, Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment, Transactions of Nonferrous Metals Society of China, 2008, 18: 227-232.

[47] B. Liu, Y. Liu*, X.Y. He, H.P. Tang, L.F. Chen, B.Y. Huang, Preparation and mechanical properties of particulate-reinforced powder metallurgy titanium matrix composites, Metallurgical and Materials Transactions A, 2007, 38: 2825-2831.

[48]  L. Bin, L. Yong*, L. Huang, J. HUANG, Y. ZHANG, B. HUANG, Effect of trace tungsten on the microstructure of TiAl alloys containing Nb and B, Rare Metals, 2007, 26: 323-329.




学术奖励

1.  教育部高等学校科学研究优秀成果奖二等奖,粉末冶金钛基结构材料制备与加工基础理论研究,2017